

# 2022 Water Quality Summary Report

# JANUARY - DECEMBER

Colorado Springs Utilities is committed to providing our customers with a superior and reliable supply of high-quality drinking water. Our drinking water continually meets or surpasses state and federal standards for drinking water. Your health, safety and satisfaction are of utmost priority.

Note: This report is provided to our customers as an additional service and is intended to be used for information only. Please refer to www.csu.org for the official Water Quality Report for Colorado Springs Utilities.

|                           |             |                        | Pine Va | alley/I |
|---------------------------|-------------|------------------------|---------|---------|
| reatment Plant Effluents  | Units       | MCL                    | Minimum | Maxii   |
| iminum                    | ug/L        | 200*                   | <20.0   | 31      |
| timony                    | ug/L        | 6                      |         | <0.     |
| enic                      | ug/L        | 10                     |         | <1      |
| dmium                     | ug/L        | 5                      |         | <0.     |
| cium                      | ug/L        | NL                     | 8420    | 97      |
| oride                     | mg/L        | 250*                   | 1.57    | 1.9     |
| orine Residual (free Cl2) | mg/L        | 4.00**                 | 0.73    | 1.2     |
| romium                    | ug/L        | 100                    |         | <1      |
| nductivity                | μS/cm       | NL                     | 87      | 10      |
| oper                      | ug/L        | 1,000*                 |         | 5.      |
| oride                     | mg/L        | 2.0*, 4.0              | 0.14    | 0.2     |
| rdness (as CaCO3)         | mg/L        | NL                     | 26.8    | 3       |
| n                         | ug/L        | 300*                   |         | 13      |
| d                         | ug/L        | 15***                  |         | <0.     |
| gnesium                   | ug/L        | NL                     | 1390    | 16      |
| inganese                  | ug/L        | 50*                    | <5.00   | 6.2     |
| ercury                    | ug/L        | 0.002                  |         | <0.     |
| rate as Nitrogen          | mg/L        | 10                     | <0.10   | <0.     |
|                           | SU          | 7.0 - 9.0<br>TT        | 7.6     | 8.      |
| са                        | ug/L        | NL                     |         | 35      |
| dium                      | ug/L        | NL                     | 5550    | 95      |
| fate                      | mg/L        | 250*                   | 19.1    | 20      |
| allium                    | ug/L        | 2                      |         | <0.     |
| al Alkalinity (as CaCO3)  | mg/L        | 20-200<br>TT           | 18      | 2       |
| al Dissolved Solids       | mg/L        | 500*                   | 54      | 6       |
| bidity                    | NTU         | <0.3 NTU               | <0.05   | 0.0     |
| с                         | ug/L        | 5,000*                 |         | <2      |
| al Dissolved Solids       | mg/L<br>NTU | TT<br>500*<br><0.3 NTU | 54      |         |

|           |         | _ |                      |         |         |
|-----------|---------|---|----------------------|---------|---------|
| lley/McCu | llough  |   | Phillip H. Tollefson |         |         |
| Maximum   | Average |   | Minimum              | Maximum | Average |
| 31.8      | <20.0   |   | 37.8                 | 190     | 94.4    |
| <0.50     |         |   |                      | <0.50   |         |
| <1.0      |         |   |                      | <1.0    |         |
| <0.50     |         |   |                      | <0.50   |         |
| 9720      | 9060    |   | 11800                | 19200   | 14800   |
| 1.96      | 1.85    |   | 6.36                 | 23.6    | 15.2    |
| 1.23      | 0.91    |   | 0.96                 | 1.6     | 1.19    |
| <1.0      |         |   |                      | <1.0    |         |
| 104       | 95      |   | 123                  | 228     | 168     |
| 5.7       |         |   |                      | <1.0    |         |
| 0.21      | 0.16    |   | 0.74                 | 1.62    | 1.2     |
| 31        | 28.9    |   | 38.4                 | 63.7    | 48.8    |
| 13.9      |         |   |                      | <10.0   |         |
| <0.50     |         |   |                      | <0.50   |         |
| 1630      | 1520    |   | 2150                 | 3840    | 2900    |
| 6.17      | <5.00   |   | <5.00                | <5.00   | <5.00   |
| <0.10     |         |   |                      | <0.10   |         |
| <0.10     | <0.10   |   | 0.12                 | 0.18    | 0.11    |
| 8.2       | 7.9     |   | 7.5                  | 7.8     | 7.7     |
| 3520      |         |   |                      | 5840    |         |
| 9550      | 7430    |   | 7960                 | 21000   | 13200   |
| 20.7      | 20      |   | 14.6                 | 29.5    | 22.6    |
| <0.50     |         |   |                      | <0.50   |         |
| 29        | 24      |   | 29                   | 42      | 36      |
| 60        | 57.4    |   | 86                   | 132     | 109     |
| 0.07      | 0.06    |   | 0.06                 | 0.28    | 0.1     |
| <2.0      |         |   |                      | <2.0    |         |
|           |         |   |                      |         |         |

\*Secondary non-enforceable standard; established for aesthetic reasons

\*\*Maximum Residual Disinfectant Level (MRDL). The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminates.

\*\*\*Action Level, 90% of residential sites must be below this level. Value listed is from the Treatment Plant Effluent.

MCL- Maximum Contaminant Level. The highest level of a contaminant that is allowed in drinking water. These standards are set by the EPA and enforceable by the Colorado Department of Public Health and Environment (CDPHE).

NL- No limit has been set

NT - Not tested. Some contaminants require less frequent monitoring and may not have been collected before this publishing.

NTU- Nephelometric Turbidity Unit. A measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person. mg/L- Milligrams per million, also expressed as parts per million (ppm): 1 part per million corresponds to one penny in \$10,000 su- Standard Unit of Measurement

ug/L- Micrograms per liter, also expressed as parts per billion (ppb): 1 part per billion corresponds to one penny in \$10,000,000

µS/cm- Microsiemens per centimeter: Conductivity is the ability of a solution to transfer (conduct) electric current. It is the reciprocal of electrical resistivity (ohms)

### Did you know- Colorado Springs Utilities Laboratory Services conducts over 1,000 tests per month to ensure the highest quality water possible

| <b>Treatment Plant Effluents</b> | Units | MCL             |
|----------------------------------|-------|-----------------|
| Aluminum                         | ug/L  | 200*            |
| Antimony                         | ug/L  | 6               |
| Arsenic                          | ug/L  | 10              |
| Cadmium                          | ug/L  | 5               |
| Calcium                          | ug/L  | NL              |
| Chloride                         | mg/L  | 250*            |
| Chlorine Residual (free Cl2)     | mg/L  | 4.00**          |
| Chromium                         | ug/L  | 100             |
| Conductivity                     | μS/cm | NL              |
| Copper                           | ug/L  | 1,000*          |
| Fluoride                         | mg/L  | 2.0*, 4.0       |
| Hardness (as CaCO3)              | mg/L  | NL              |
| Iron                             | ug/L  | 300*            |
| Lead                             | ug/L  | 15***           |
| Magnesium                        | ug/L  | NL              |
| Manganese                        | ug/L  | 50*             |
| Mercury                          | mg/L  | 0.002           |
| Nitrate as Nitrogen              | mg/L  | 10              |
| рН                               | SU    | 7.0 - 9.0<br>TT |
| Silica                           | ug/L  | NL              |
| Sodium                           | ug/L  | NL              |
| Sulfate                          | mg/L  | 250*            |
| Thallium                         | ug/L  | 2               |
| Total Alkalinity (as CaCO3)      | mg/L  | 20-200<br>TT    |
| Total Dissolved Solids           | mg/L  | 500*            |
| Turbidity                        | NTU   | <0.3 NTU        |
| Zinc                             | ug/L  | 5,000*          |

## Fountain Valley Authority: Supplies water to Fountain, Security, Widefield, Colorado Springs and Stratmoor Hills

| Minimum | Maximum | Average |
|---------|---------|---------|
| <20.0   | <20.0   | <20.0   |
|         | <0.50   |         |
|         | <1.0    |         |
|         | <0.50   |         |
| 38000   | 50400   | 44900   |
| 9.8     | 11.3    | 10.7    |
| 0.99    | 1.47    | 1.14    |
|         | 1.3     |         |
| 339     | 423     | 383     |
|         | 1.0     |         |
| 0.39    | 0.45    | 0.42    |
| 134     | 180     | 159     |
|         | 55.6    |         |
|         | <0.50   |         |
| 5910    | 13900   | 11500   |
|         | <5.00   |         |
|         | <0.10   |         |
| 0.15    | 0.29    | 0.22    |
| 7.6     | 7.8     | 7.7     |
|         | 5310    |         |
| 15000   | 19800   | 17600   |
| 74.4    | 97.4    | 86.7    |
|         | <0.50   |         |
| 81      | 104     | 102     |
| 223     | 267     | 245     |
| 0.05    | 3.6     | 0.43    |
|         | 2.3     |         |

| Edward W. Bailey: Built in 2016, |
|----------------------------------|
| Bailey Treatment Plant currently |
| provides water to the Southeast  |
| side of Colorado Springs         |

| Minimum | Maxium | Average |
|---------|--------|---------|
| <20.0   | <20.0  | <20.0   |
|         | <0.50  |         |
|         | <1.0   |         |
|         | <0.50  |         |
| 42600   | 48200  | 45300   |
| 7.44    | 9.01   | 8.57    |
| 0.89    | 1.23   | 1.01    |
|         | 1.5    |         |
| 356     | 426    | 404     |
|         | 3.2    |         |
| 0.42    | 0.47   | 0.45    |
| 150     | 172    | 161     |
|         | <10.0  |         |
|         | <0.50  |         |
| 10600   | 12600  | 11600   |
|         | <5.00  |         |
|         | <0.10  |         |
| 0.17    | 0.37   | 0.25    |
| 7.4     | 8.00   | 7.7     |
|         | 6260   |         |
| 21700   | 24600  | 23000   |
| 88      | 109    | 102     |
|         | <0.50  |         |
| 92      | 105    | 100     |
| 277     | 279    | 278     |
| <0.05   | 0.13   | <0.05   |
|         | <2.0   |         |

| Distribution System          | Units | MCL     |
|------------------------------|-------|---------|
|                              |       | 7.0-9.0 |
| рН                           | su    | TT      |
|                              |       |         |
| Temperature                  | °C    | NL      |
| Chlorine Residual (free Cl2) | mg/L  | 4.00**  |

| Minimum | Maximum | Average |
|---------|---------|---------|
| 7.3     | 9.1     | 8.00    |
| 3       | 23      | 12      |
| 0.17    | 1.45    | 0.62    |

#### °C- Centrigrade

TT- Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water

<u>Organic Compounds</u>: Additional organic compounds are analyzed periodically as required internally or by the EPA. These compounds include volatile organics chemicals, pesticides, herbicides and other synthetic organic chemicals. The concentrations of these compounds in the drinking water have never exceeded their respective MCLs.

<u>Radionuclides</u>: Radionuclides are analyzed periodically as required by the EPA. The concentrations have never exceeded the MCLs. Specific data available upon request.

Advisory: All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (1-800-426-4791), or by visiting www.epa.gov/safewater.

#### Did you know- Colorado Springs Utilities Laboratory Services conducts over 1,000 tests per month to ensure the highest quality water possible

Ute Pass: Built in 1987, Ute Pass Treatment Plant currently provides water to the communities of Green Mountain Falls, Chipita Park and Cascade

| Treatment Plant Effluents    | Units | MCL             | Ν |
|------------------------------|-------|-----------------|---|
| Aluminum                     | ug/L  | 200*            |   |
| Antimony                     | ug/L  | 6               |   |
| Arsenic                      | ug/L  | 10              |   |
| Cadmium                      | ug/L  | 5               |   |
| Calcium                      | ug/L  | NL              |   |
| Chloride                     | mg/L  | 250*            |   |
| Chlorine Residual (free Cl2) | mg/L  | 4.00**          |   |
| Chromium                     | ug/L  | 100             |   |
| Conductivity                 | μS/cm | NL              |   |
| Copper                       | ug/L  | 1,000*          |   |
| Fluoride                     | mg/L  | 2.0*, 4.0       |   |
| Hardness (as CaCO3)          | mg/L  | NL              |   |
| Iron                         | ug/L  | 300*            |   |
| Lead                         | ug/L  | 15***           |   |
| Magnesium                    | ug/L  | NL              |   |
| Manganese                    | ug/L  | 50*             |   |
| Mercury                      | ug/L  | 0.002           |   |
| Nitrate as Nitrogen          | mg/L  | 10              |   |
| рН                           | SU    | 7.0 - 9.0<br>TT |   |
| Silica                       | ug/L  | NL              |   |
| Sodium                       | ug/L  | NL              |   |
| Sulfate                      | mg/L  | 250*            |   |
| Thallium                     | ug/L  | 2               |   |
| Total Alkalinity (as CaCO3)  | mg/L  | 20-200<br>TT    |   |
| Total Dissolved Solids       | mg/L  | 500*            |   |
| Turbidity                    | NTU   | <0.3 NTU        |   |
| Zinc                         | ug/L  | 5,000*          |   |

| Minimum | Maximum | Average |
|---------|---------|---------|
| <20.0   | 21.5    | <20.0   |
|         | <0.50   |         |
|         | <1.0    |         |
|         | <0.50   |         |
| 11300   | 13200   | 12200   |
| 4.3     | 5.06    | 4.76    |
| 0.93    | 1.13    | 1.01    |
|         | <1.0    |         |
| 103     | 139     | 121     |
|         | <1.0    |         |
| 0.35    | 0.45    | 0.38    |
| 37.8    | 44.4    | 41      |
|         | 24.7    |         |
|         | <0.50   |         |
| 2310    | 2800    | 2430    |
|         | <5.00   |         |
|         | <0.10   |         |
| <0.10   | 0.14    | <0.10   |
| 7.8     | 8.2     | 7.8     |
|         | 1520    |         |
| 4450    | 13500   | 7910    |
| 15.00   | 16.00   | 15.5    |
|         | <0.50   |         |
| 30      | 51      | 38      |
| 61      | 69      | 65      |
| <0.05   | 0.23    | <0.05   |
|         | <2.0    |         |

Questions? Please call Laboratory Services 719-668-4560