Hitting your Numbers

- 1) What numbers?
 - a) Volume
 - b) Original Gravity
 - c) IBU
 - d) Mash Efficiency
 - e) Boil-off rate
 - f) Final Gravity
- 2) How to measure your numbers
 - a) Volume
 - i) NOTE: The volume of liquid will increase about 4% as it comes up to boiling temp.
 - ii) If your pot has a fancy sight glass, your done
 - (1) Sensitive to temperature
 - iii) Yard stick + math
 - (1) Measure pot diameter and height of liquid in inches using a yardstick
 - (2) Volume (Gallons) = (Height x π x r^2) / 231
 - (3) For example, I know on my pot 1" = 0.64 gallons, so $9 \frac{1}{2}" = 6.08$ Gallons
 - (4) Sensitive to temperature
 - iv) Weight
 - (1) 1 gal = 8.34 lb
 - (2) Very accurate, but hard to measure a hot pot full of sticky wort
 - (3) Not sensitive to temperature
 - (4) Hard to measure hot/boiling liquids
 - (5) Need scale that is accurate in 0-70 lb range for 5 gal batches
 - v) Measure, fill, mark
 - (1) Measure out small amounts of liquid, add to the vessel, and mark the vessel at each point
 - (2) Not very accurate, prone to error
 - (3) Sensitive to temperature
 - (4) Hard to guess levels in between marks
 - vi) Personally, I use weight for cold liquids and a yardstick for boiling liquids. I tend to ignore the 4% hot/cold difference.
 - b) Gravity
 - i) Hydrometer
 - (1) Pro
 - (a) Cheap
 - (b) Accurate if used correctly
 - (c) Can accurately measure Final Gravity
 - (2) Cons
 - (a) Need to cool liquid before measuring
 - (i) I like to keep a metal bowl in the freezer then pour hot wort into it to chill it down fast
 - (b) Need to apply temperature adjustment if liquid temp doesn't match hydrometer calibration temp
 - (c) Needs a lot of liquid

- ii) Refractometer
 - (1) Pro
 - (a) Very accurate
 - (b) Built in temperature calibration, no need to chill sample
 - (c) Only uses a few drops
 - (d) Fast
 - (2) Cons
 - (a) Expensive
 - (b) Measuring final gravity is very accurate
 - (3) TIP: The temperature calibration can take a minute or two as the temps in the refractometer stabilize.
- c) IBU
 - Unfortunately the only way to measure IBU is with a spectrophotometer https://phdinbeer.com/2014/09/16/beer-chemistry-1-measuring-ibus-in-beer/
 - ii) Very Expensive
- d) Mash efficiency
 - i) http://howtobrew.com/book/section-2/what-is-malted-grain/mash-efficiency
 - ii) https://www.brewersfriend.com/brewhouse-efficiency/
 - iii) Note: it's common for efficiency to vary by
 - (1) Grain crush size
 - (2) Mash volume / Original gravity / grain weight
 - (3) Water to Grist ratio
- e) Boil-off rate
 - i) https://www.morebeer.com/content/boil_off_rate_calculator
 - ii) Note: this can vary by
 - (1) Weather
 - (2) Pot Diameter
 - (3) Burner
 - (4) Propane tank fullness
 - (5) Phase of moon
- 3) What numbers actually matter and why?
 - a) Original Gravity
 - i) Gravity and IBU balance against each other
 - ii) Too high O.G
 - (1) Beer won't be hoppy enough and will be unbalanced
 - (2) Finishing gravity too high. Yeast have a limited attenuation and may not give your the final dryness you want
 - iii) Too low O.G means the beer will be too hoppy, and may be thin due to lower final gravity
 - iv) Original Gravity determines
 - (1) Alcohol
 - (2) Body and Mouthfeel
 - b) Volume
 - i) Effects gravity and IBU
 - ii) Too much volume and your gravity will be low, ibu will be low beer will be thin
 - iii) Too low a volume and gravity will be high, ibu will be high
 - iv) One hop pellet in 1oz is a lot more bitter than one hop pellet in 5 Gallons
 - c) IBU

- i) Bitterness balances malt sweetness
- ii) If you can't consistently hit an IBU target, it's hard to formulate recipes
 - (1) Beer may be bitter one time and not the next time
- d) Mash efficiency
 - i) Really only matters for commercial brewers where cost is important
 - ii) Effects how much grain you buy
 - iii) You want to know roughly what your efficiency is
 - iv) Brewing is easier if you formulate your recipe with an efficiency lower that what you actually get.
 - (1) See below, but it's easier to dilute with water than to add more sugar
- e) Boil-off rate
 - i) Recipe will expects a boil-off rate usually around 14%
 - ii) https://www.morebeer.com/content/boil off rate calculator
 - iii) If you don't boil hard enough (compared to recipe) you'll end up with a lower gravity, higher volume, and lower IBU
 - (1) If this happens you're kind of stuck. If you boil longer to reduce the volume, you'll throw off IBU number. If you add DME/LME, your IBU number will be off.
 - iv) If you boil harder (compared to recipe) you'll end up with a more concentrated wort, lower volume, and higher IBU
 - (1) See below, but it's easy to add water to compensate
- f) Final Gravity
 - i) Ensures you fermented to completion and have the proper amount of residual sugars
 - ii) Also balances against IBU

How to hit your numbers:

- 1) IBU
 - a) Adjust hops for the actual Alpha Acid of your hops
 - i) If recipe calls for 1oz of hops that are 10%AA and your hops are 5% AA
 - (1) Target weight = Recipe Weight * Recipe AA / Hop AA
 - (2) So: 10z*10/5 = 20z to reach recipe bitterness level
 - b) Ensure your volume is correct, see volume below
- 2) Final Gravity
 - a) Lots of happy healthy yeast
 - b) Ramp fermentation temp to push yeast to dry out beer
 - c) Do a force fermentation to determine your lowest possible gravity
 - i) <u>https://www.winning-homebrew.com/forced-fermentation-test.html</u>
 - d) Hit your mash temps
 - i) Be consistent with how you measure mash temperature
 - ii) The mash is a temperature gradient and will have different temps and different locations
 - iii) A temp probe inserted sideways into vessel may have different temperature depending on grain amount
 - iv) In the end, get as close as you can, but don't worry
 - e) Good yeast is more important that hitting mash temps
 - i) http://brulosophy.com/2015/10/12/the-mash-high-vs-low-temperature-exbeeriment-result-s/

- f) For me, I've never had good success adding hot water to grain and hitting a target temp. So I gave up and went to a mash system where I can step mash and control temps. If I'm off, I can adjust.
- g) If you have tips send them in!
- 3) Gravity/Volume
 - a) You have two opportunities to fix your numbers:
 - i) Pre-boil
 - (1) At this point you can fix a lot and fixing it here will set you up for success
 - ii) Post-boil
 - (1) At this point you can only add water
 - b) Dilution/Evaporation equation
 - i) You can exchange gravity for volume
 - (1) Increase volume by adding water, reduces gravity
 - (2) Decreasing volume, by boiling, increases gravity
 - (3) Assuming a well stirred pot, removing volume, doesn't increase or decrease gravity
 - ii) Starting Gravity Units * Starting Volume = Ending Gravity Units * Ending Volume
 - iii) A Gravity unit is
 - (1) (S.G 1) * 1000
 - (2) So 1.090 = 90, 1.075 = 75, etc
 - iv) Using the maths:
 - (1) Ending Gravity Units = Starting Gravity Units * Starting Volume / Ending Volume
 - (2) Ending Volume = Starting Gravity Units * Starting Volume / Ending Gravity Units
- 4) Examples
 - a) Let's say you're shooting for: Pre-boil Gravity of 1.070 and 7 gallons
 - b) Case 1: Pre-boil gravity too high
 - i) Your pre-boil measurement is 1.090 and 7 gallons
 - (1) Ending volume = 90 * 7 / 70 = 9 Gallons
 - (2) So add 2 Gallons of water to get to 1.070
 - (3) Stir and remove 2 gallons to get 1.070 @ 7 gallons
 - c) Case 2: Pre-boil gravity too low
 - i) Your pre-boil measurement is 1.050 and 7 gallons
 - (1) Boil method:
 - (a) Ending Volume = 50 * 7 / 70 = 5 gallons
 - (b) Boil until the volume is 5 gallons
 - (c) You will need to adjust hop rates for the new reduced batch size
 - (2) Add DME/LME to reach 1.070 and 7 gallons
 - (a) DME is 45 points per lb per gallon
 - (b) LME is 37 points per lb per gallon
 - (c) So total points of recipe: 75 GU * 7 gal = 490 points, and measured was 350, so you need 140 more points
 - (d) So 140/45 = 3.1 lb DME
 - (e) Or 140/37 = 3.78 lb LME
 - d) Case 3: Pre-boil volume too high
 - i) Your pre-boil measurement is 1.070 and 9 gallons
 - ii) Stir the wort thoroughly and remove 2 gallons
 - e) Case 4: Pre-boil volume too low
 - i) Your pre-boil measurement is 1.070 and 5 gallons

- ii) Live with the reduced volume
 - (1) Adjust hops for new batch size
- iii) Or add 2 gallons of water to get to 7 gallons
 - (1) This will lower the gravity to 1.050 (70*5/7) at 7 Gallons
 - (2) Then add 3.1 lb DME to bring gravity up to 1.070
- f) Case 5: Everything is off
 - i) Your pre-boil measurement is 1.080 and 8 gallons
 - ii) First, dilute with water to hit 1.070
 - (1) 80 * 8 / 70 = 9.1 Gallons, so add 1.1 gallons
 - iii) Now stir well and remove 2.1 Gallons
- g) Case 6: Everything is off 2
 - i) Your pre-boil measurement is 1.050 and 5 gallons
 - (1) Add 2 gallons of water to get to 7 gallons
 - (a) You should end up with 7 gallons at 1.035
 - (2) Add 5.4 lb DME
- h) Case 7: you hit your pre-boil number and post boil volume is low and gravity is high
 - i) Since you hit your pre-boil numbers, the amount of sugar in the pot is right, you just need to replace some of the water that was lost
 - ii) So if your pre-boil was 1.070 and 7 gal, and your post-boil is supposed to be 6 gal at 1.082
 - iii) If you have 5 gal at 1.098, then add 1 gal of water and you should hit your number.
- 5) Recommendations
 - a) If your mash efficiency is about 80%, target your recipe for ~75%
 - You'll always have too much sugar out of your mash and diluting with water is easier than adding DME/LME
 - ii) The actual efficiency number doesn't matter as long as your recipe was computed for a higher efficiency
 - iii) Yes, this means you technically bought too much grain, but it also means you don't have to measure your mash/sparge water to the fraction of an ounce. And it means you don't have to keep a ton of extract on hand.
 - b) Boil more aggressively than your recipe expects
 - i) Boiling only removes water and doesn't remove sugar
 - ii) If you hit your pre-boil number and boil more aggressively, then it just means you lost more water than desired and it's easy to add it back in.
 - c) Make more than you need
 - i) Your total post boil volume should fill your carboy with extra to spare.
 - ii) If your carboy holds 5.5 gallons, make 6 gallons of wort and throw half a gallon away.
 - d) Pre-boil Volume, and Gravity are key
 - i) Dial these in and your post-boil adjustment will be easier